

Introduction

Andy Penev Construction Management CityCenterDC | Parcel 1 Washington, D.C.

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

CityCenterDC | Parcel 1 Washington, D.C.

Size: 257,500 SF
Location: Washington, D.C.
Project Cost: \$48 million
Contract Type: (4) GMP
Delivery Method: Design-Bid-Build
Schedule: 4/11 – 1/14

A Development by Hines | Archstone | The First Investor

Developer: Hines | Archstone

General Contractor: Clark/Smoot (JV)

Arch. of Record: Shalom Baranes Associates

Design Architect: Foster + Partners

Hines

ARCHSTONE

Foster + Partners

Project Overview

Andy Penev Construction Management

Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

CityCenterDC | Parcel 1 Washington, D.C.

• Create a new phasing and sequencing plan for typical floor and implement through a Short Interval Production Schedule.

Analysis #2: Construction Analysis of Electrical Redesign

• Propose an alternative electrical distribution system design and analyze its construction impacts.

• Provide an alternative footbridge installation method to reduce cost and constructability issues.

Analysis #1: SIPS

Analysis #3: Alternative Footbridge Installation

Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

CityCenterDC | Parcel 1 Washington, D.C.

Analysis #1 Short Interval Production Schedule (SIPS)

Andy Penev **Construction Management**

Project Overview Analysis #1: SIPS New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

Framing & Plumbing Rough In

Mechanical Duct

Risers

Background Information

Project Overview Analysis #1: SIPS New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

Framing & Plumbing Rough In

Mechanical Duct

Risers

Background Information

CityCenterDC | Parcel 1

Rough In

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

- Identify Duct Mains
- Identify VAV Boxes

New Phasing

CityCenterDC | Parcel 1

Mechanical Pipe, Plumbing, Duct Rough In

Rough In

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

- Identify Duct Mains
- Identify VAV Boxes

Install VAV Boxes

New Phasing

Sprinkler Rough In Frame Ceilings

Lavatory Steel

Rough In Duct Mains

Mechanical Pipe, Plumbing, Duct Rough In

Rough In

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

- Identify Duct Mains
- Identify VAV Boxes

New Phasing

Install VAV Boxes

Mechanical Pipe, Plumbing, Duct Rough In

Rough In

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

- Create zones on each floor
- Crew stays in zone for given amount of • time
- Creates efficient use of space •
- Entire floor space is used

Important:

- Clean up
- Timely completion
- Material management

New Phasing

Layout & Top Track

Install VAV Boxes

Frame Walls

Rough In Duct Mains

Install Lavatory Support Steel Rough In Duct Mains

Install VAV boxes

Frame Walls

CityCenterDC | Parcel 1

Analysis #1: SIPS Background Information Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Activity	Color	Activity	Color
Install Sprinkler Standpipes		Rough In Duct Mains	
Duct Riser Rough In		Install VAV boxes	
Plumbing Riser Rough In		Frame Walls	
Mechanical Riser Rough In		Mechanical Pipe Rough In	
Telecom/Security Riser Rough In		Plumbing Rough In	
Electrical Riser Rough In		Duct Rough In	
Install AHU		Sprinkler Rough In	
Frame & Hang Shaft Walls		Frame Ceilings	
Close In Shafts		Fire Alarm Rough In	
Layout & Top Track		Electrical Rough In	
Install Lavatory Support Steel			

Analysis #1: SIPS

MAY												J	UN	E																
F	Μ	Т	W	R	F	Μ	Т	W	R	F	Μ	Т	W	R	F	Μ	Т	W	R	F	Μ	Т	W	R	F	Μ	Т	W	R	F
L																														

Short Interval Production Schedule

- Same duration
- Reorganization
- Overlapping activities
- Float on second half of activities

• Same crew

Project Overview Analysis #1: SIPS Background Information New Phasing & SIPS

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #1: SIPS

Cost

- General Conditions
- Total Savings = \$20,524

										MAY	1																	J	UNI	E								Л	JLY	٦
	Activity	1	2 3	3 4	7	8 9	10	11 1	4 15	16	17	18 2	1 22	2 23	24	25	28 2	9 3	0 31	1 1	4	5	6	7	81	1 12	2 13	14	15	18 1	9 2	0 21	22	25 2	26 2	7 28	29	2	3 (4
	-	T١	WR	F	ΜТ	w	R	FΝ	1 Т	w	R	FΝ	ИΤ	W	R	F	ΜТ	٠v	V R	F	М	т	WF	۲F	N	1 T	w	R	F	ΜT	r v	V R	F	МI	w	/ R	F	ΜТ	r w	/
	Install Sprinkler Standpipes																																							
	Duct Riser Rough In																																							
	Plumbing Riser Rough In																																							
	Mechanical Riser Rough In																																							
	Telecom/Security Riser Rough In																																							
	Electrical Riser Rough In																																							
	Install AHU																																							
	Frame & Hang Shaft Walls																																							
	Close In Shafts																			_					_												\square			
ŝ	Layout & Top Track																_	_	_	_				_	_	_					_				_		\square	_	_	
00	Install Lavatory Support Steel			\square													_	_	_	_				_	_	_				_	_				_		\square	_	_	
LL.	Rough In Duct Mains	\square	_	\vdash	_			_	_								_	_	_	-				_	_	_	_			_	_	_			_	_	\square	4	_	
	Install VAV boxes		_	\vdash	_		_	_	_											-			_	_	_	_	-			_	_	_			_	_	\square	_	_	_
	Frame Walls		_	\vdash	_		_	_	_		_	_	_											_		_	_		_	_	_	_	-		_	_	\square	_	_	_
	Mechanical Pipe Rough In		_	+	_			_	_		_	_	_				_	_	_							_	-		_	_	_	_			_	_	\square	_	_	_
	Plumbing Rough In		_	+	_		_	_	_	\square	-	_	-			\square	_	-	+							+	-			_	_	-	-	\vdash	_	-	\vdash	_	_	_
	Duct Rough In		_	+	_		_	_	_	\square	-	_	-			\square	_	-	+											\rightarrow	_	-	-	$ \rightarrow $	_	-	\vdash	-	_	_
	Sprinkler Rough In		_	+	_		_	_	_		-	_	-	_			_	-	-	-	-		_										_	\vdash	_	-	\square	_	_	_
	Frame Ceilings		_	+	_		_	_	-		-	-	+-	-	\square	\square	-	+	+	-	-		_	-	+	+	-								_			-	-	-
	Fire Alarm Rough In		_	+	-		_	_	-		-	+	+-	-	\square	\vdash	+	+	+	-	-		-	+	+	+	-		_	_	+	+-			_	-		-	-	-
	Electrical Rough In						-	-	+	+	+	+	+	-	H	-	+	+	+	+	-	-	-	+	+	+	+	+	_	-	+	+	-		-	-	-	-	+	-
	Install Sprinkler Standpipes		+-	┿			-	-	+	\vdash	-	+	+	-	\square	\vdash	+	+	+	+-	-		-	+	+	+	+-	\square	_	+	+	+-	-	\vdash	+	+	\vdash	+	+	
	Duct Riser Rough In						-	-	+-	\square	-	+	+	-	\square	\vdash	+	+	+	-	-		-	+	+	+	-	\square	_	+	+	+	-	\vdash	+	+-	\vdash	+	-	
	Plumbing Riser Rough In						-	-	+-	\square	-	+	+	-	\vdash	\vdash	+	+	+	-	-	\square	-	+	+	+	-	\square	_	+	+	+	-	\vdash	+	+-	\vdash	+	-	-
	Talaaan (Canutity Dian David In		_		_		-	+	+	\vdash	-	+	+	-	\vdash	\vdash	+	+	+	÷	-		-	+	+	+	+-	\vdash	_	+	+	+-	-	\vdash	+	+	\mapsto	+	+	
	Fleetrical Disor Dough In						-	-	+	\vdash	-	+	+	-	\vdash		+	+	+	-	-		-	+	+	+	-	$\left \right $	_	+	+	+-	-		+	+-	\vdash	+	+	-
	Electrical Riser Rough In	┨──┛					-	+	+	\vdash	-	+	+	-	\vdash	\vdash	+	+	+	+-	-		-	+	+	+	-	$\left \right $	_	+	+	+-	-		+	+-	\vdash	+		-
	Frame & Hang Shaft Walls	┼┼	-	+							-	+	+	-	\vdash	\vdash	+	+	+	÷	-	\square	-	+	+	+	+-	\vdash		+	+	+-	-	\vdash	+	+	\vdash	+	+	-
	Close In Shafts		-	+	-								+	-	H	\vdash	+	+	+	+	-	\square	-	+	+	+	+	\vdash	-	+	+	+	-		+	+	\vdash	+	+	
	Lavout & Ton Track	┨───		+	-								+	-	H	\vdash	+	+	+	+	-	H	-	+	+	+	+	\vdash	-	+	+	+	-		+	+	\vdash	+	+	
or 2	Install Lavatory Support Steel		-	++	-										H	\vdash	+	÷	+	÷	-		-	+	÷	+	+-	\vdash		+	+	+	-	\vdash	+	+	\vdash	+	+	
윤	Rough In Duct Mains		-	+	-		-	-	+	\square						\vdash	+	+	+	÷	-		-	+	+	+	+-	\vdash		+	+	+	+	\vdash	+	+	\vdash	+	+	
	Install VAV boxes		-	+	-			-	-	\square							+	+	+	1				+	+	+	+			+	+	+	-		+	+	\vdash	+	-	
	Frame Walls		-	+	-			-	-	H	7		1						+	1				+		+	-			+	+	+	-		+	+	\vdash	+	-	
	Mechanical Pipe Rough In		-	+					-	\square		+	Т							Ú.				+		+	\vdash	\square		+	+	+	\square		+	+	\square	+	-	1
	Plumbing Rough In		_	+					-	\square		+		-										+		+	\vdash	\square		+	+	+	\square		+	+	\square	+	-	1
	Duct Rough In		_	+					-	\square		+		-				Т		T				+		+	\vdash	\square		+	+	+			+	+	\square	-	-	1
	Fire Alarm Rough In	1		\square		\square		+		\square		\uparrow	T											+		1	1	\square		+	\neg	1		\square		1	\square	\uparrow	+	1
	Electrical Rough In	1		\square				\uparrow	+	\square		\uparrow		\square		\square	+							+		\top	\vdash	\square		+	\uparrow	\top	\square	\square	\top	\top	\square	\uparrow	+	1
	Sprinkler Rough In	\square		\square		\square		\uparrow		\square		\uparrow	T	\square			\uparrow			T					1		1	\square		\uparrow	\uparrow	1		\square	1	\top	\square	\uparrow	Ť	1
	Frame Ceilings	\square		\square					1	\square			T				Ť		T	T				T	T		Ì.			Ť				\square		T	\square	\neg	Ť	1

Results

Constructability

- Organization
- Collaboration
- Material Management
 - Deliveries

CityCenterDC | Parcel 1 Washington, D.C.

Schedule • Decreased by 13 days

- Delays

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

CityCenterDC | Parcel 1 Washington, D.C.

Analysis #2 Construction Analysis of Electrical Redesign

Andy Penev **Construction Management**

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

- 2 Switchboards (4000A & 3000A)
- Total kVA = 5,248
 - 20.4 W/SF
- Separate retail feed
- Lighting + Receptacle load = 2,092 kVA
 - 7.7 W/SF
- 4000A SWBD busway to electrical closets
 - Took most of lighting and receptacle loads (1,902 kVA)

Background Information

SWITCHBOARD MS12A LOADS:	
RECEPTACLES & FUTURE RECEPTACLES	1,570 KVA
LIGHTING & FUTURE LIGHTING	332 KVA
ELEVATORS	0 KVA
MISCELLANEOUS	11 KVA
* AIR CONDITIONING	0 KVA
FPTD MOTORS	345 KVA
DOMESTIC WATER HEATING	24 KVA
* ELECTRIC HEAT	891 KVA
TOTAL	3,173 KVA
* NONCOINCIDENT LOADS	(3,982A @ 460V, 3Ø)

SWITCHBOARD MS12C LOADS:	
RECEPTACLES & FUTURE RECEPTACLES	70 KVA
LIGHTING & FUTURE LIGHTING	120 KVA
ELEVATORS	397 KVA
MISCELLANEOUS	178 KVA
* AIR CONDITIONING	660 KVA
FPTD MOTORS	25 KVA
WATER CHILLING UNITS	465 KVA
DOMESTIC WATER HEATING	14 KVA
* ELECTRIC HEAT	0 KVA
FIRE PUMP	146 KVA
TOTAL	2,075 KVA
* NONCOINCIDENT LOADS	(2,604A @ 460V, 3Ø)

Project Overview Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

Ltg. + Receptacle Power Density

- ASHRAE Maximum Lighting Power Density = 0.9 W/SF
- Receptacle Load = 2.4 W/SF

Total = 3.3 W/SF

Redesign

	kVA Load	FLA	Voltage	Phase	SWBD Size
D	3173	3982	480	3	4000A
BD	2373	2978	480	3	3000A

SWITCHBOARD MS12A LOADS:	
RECEPTACLES & FUTURE RECEPTACLES	1,570 KVA
LIGHTING & FUTURE LIGHTING	332 KVA
ELEVATORS	0 KVA
MISCELLANEOUS	11 KVA
* AIR CONDITIONING	0 KVA
FPTD MOTORS	345 KVA
DOMESTIC WATER HEATING	24 KVA
* ELECTRIC HEAT	891 KVA
TOTAL	3,173 KVA
* NONCOINCIDENT LOADS	(3,982A @ 460V, 3Ø)

SWITCHBOARD MS12C LOADS:	
RECEPTACLES & FUTURE RECEPTACLES	70 KVA
LIGHTING & FUTURE LIGHTING	120 KVA
ELEVATORS	397 KVA
MISCELLANEOUS	178 KVA
* AIR CONDITIONING	660 KVA
FPTD MOTORS	25 KVA
WATER CHILLING UNITS	465 KVA
DOMESTIC WATER HEATING	14 KVA
* ELECTRIC HEAT	0 KVA
FIRE PUMP	146 KVA
TOTAL	2,075 KVA
* NONCOINCIDENT LOADS	(2,604A @ 460V, 3Ø)

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

- Eliminate XFMR on floors 4,6, & 8
 - Feed low voltage panels from floor above
- Floors 5,7, & 9 XFMR step up to 150kVa
- Feeders, plugs, breakers
- Coordination of cores
 - Fireproofing

2 sets 4#4/0, 1#2G, 2-1/2"C

2 sets 4#4/0, 1#2G, 2-1/2"C

150 kVA DRY TYPE XFMR. VENT/LATED, 3P, 4W 460:120/208 V. NEMA TP-1

Floor 5

Floor 4

Redesign

Washington, D.C.

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

- Eliminate XFMR on floors 4,6, & 8
 - Feed low voltage panels from floor above
- Floors 5,7, & 9 XFMR step up to 150kVa
- Feeders, plugs, breakers
- Coordination of cores
 - Fireproofing

2 sets 4#4/0, 1#2G, 2-1/2"C

2 sets 4#4/0, 1#2G, 2-1/2"C

150 kVA DRY TYPE XFMR. VENTILATED, 3P, 4W 460:120/208 V, NEMA TP-1

Floor 5

Floor 4

Redesign

- Smaller XFMR from reduced loads on 3rd floor

• Consolidation of HVAC panels

• Feeders

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

<u>Schedule</u>

ELECTRICAL RISER ROUGH IN	Hours per Floor	Crew Size
Original Design (5 day duration)	76	2
Redesign Floor w/ XFMR	79.75	2
Redesign Floor w/o XFMR	31.42	1*

ELECTRICAL ROUGH IN	Hours per Floor	Crew Size
Original Design	149	4
Redesign Floor w/ XFMR	142.33	4
Redesign Floor w/o XFMR	148.33	4

Total labor hours saved: 182

- Dependency
- Resource allocation

CityCenterDC | Parcel 1

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

<u>Schedule</u>

ELECTRICAL RISER ROUGH IN	Hours per Floor	Crew Size
Original Design (5 day duration)	76	2
Redesign Floor w/ XFMR	79.75	2
Redesign Floor w/o XFMR	31.42	1*

ELECTRICAL ROUGH IN	Hours per Floor	Crew Size
Original Design	149	4
Redesign Floor w/ XFMR	142.33	4
Redesign Floor w/o XFMR	148.33	4

Total labor hours saved: 182

- Dependency
- Resource allocation

\$600,000 \$500,000 \$90.51 \$400,000 \$300,000 \$417,299 \$200,000 \$100,000 Original Redesign

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #2: Electrical Redesign

<u>Schedule</u>

ELECTRICAL RISER ROUGH IN	Hours per Floor	Crew Size
Original Design (5 day duration)	76	2
Redesign Floor w/ XFMR	79.75	2
Redesign Floor w/o XFMR	31.42	1*

ELECTRICAL ROUGH IN	Hours per Floor	Crew Size
Original Design	149	4
Redesign Floor w/ XFMR	142.33	4
Redesign Floor w/o XFMR	148.33	4

Total labor hours saved: 182

- Dependency
- Resource allocation

\$600,000 \$500,000 \$90 51 \$400,000 \$300,000 \$417,299 \$200,000 \$100,000 Original

\$112,761

- Horizontal bus runs quicker with lighter material • Less panels • Less XFMRs • Less cluttered electrical closet • Coring coordination

- - Fireproofing

\$82.338

\$304.538

Labor

Material

Labor Hours
719.9
626
93.9

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

CityCenterDC | Parcel 1 Washington, D.C.

Andy Penev **Construction Management**

Analysis #3 Alternative Footbridge Installation

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Research Application Results

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Background Information

CityCenterDC | Parcel 1 Washington, D.C.

- 5 footbridges in between office buildings

 - Curtain wall
 - On floors 3,5,7,9, & 11

• Steel

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Background Information

CityCenterDC | Parcel 1 Washington, D.C.

Bridges

- Prefabrication
- Including curtain wall
- Too much risk building in place
 - 20' long/each
 - 36,666 lbs./each

<u>Crane</u>

- 500 ton mobile
- 220,500 lbs counterweight
 - 138' jib length
- 51,717 lifting capacity
- Shoring underneath

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Application Results

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Research

CityCenterDC | Parcel 1 Washington, D.C.

VSL Heavy Lifting

"For projects where notable weight, dimensions, or space limitations exclude the use of cranes or other conventional handling." (VSL)

- Hydraulic jacks
 - Piston
 - Tensile member
- Gauges and control systems
 - Synchronized movement
- 20 m/hr
- Up to 10,000 tons

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Application Results

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Research

CityCenterDC | Parcel 1 Washington, D.C.

VSL Heavy Lifting

"For projects where notable weight, dimensions, or space limitations exclude the use of cranes or other conventional handling." (VSL)

- Hydraulic jacks
 - Piston
 - Tensile member
- Gauges and control systems
 - Synchronized movement
- 20 m/hr
- Up to 10,000 tons

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Application Results

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Damas Tower Footbridge

"For projects where notable weight, dimensions, or space limitations exclude the use of cranes or other conventional handling." (VSL)

Research

VSL Heavy Lifting

Petronas Towers

- Hydraulic jacks
 - Piston
 - Tensile member
- Gauges and control systems
 - Synchronized movement
- 20 m/hr
- Up to 10,000 tons

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Results

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Application

- 4 jacks
- Temporary beams span between atriums
- Structural Considerations
 - Steel strands
 - Max. force: 12.6 kips
 - Temporary beams
 - Moment: 25.2 ft k
 - Column buckling
 - F.S. = 3.4

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application

Final Recommendations Acknowledgements

Analysis #3: Footbridges

CityCenterDC | Parcel 1

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application

Final Recommendations Acknowledgements

Analysis #3: Footbridges

Results

CityCenterDC | Parcel 1 Washington, D.C.

Constructability

• Guide cables • Prefabricate bridges onsite • 17 days/bridge • On portable platform

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Acknowledgements

Total Cost Savings: \$491,464 Schedule Savings Reduction of Constructability Concerns Tenant Fit-Out Efficiency

Analysis #2: Construction Analysis of Electrical Redesign

Conclusion

Analysis #1: SIPS

- Decrease schedule by 13 days
- General conditions savings
- Efficient use of floor space
- Material & labor savings
- Easier system to install
- Reduction of crew size

Analysis #3: Alternative Footbridge Construction

- Major equipment cost savings
- Fewer constructability concerns
 - No schedule impact

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations

Special Thanks

- Family & Friends
- CityCenterDC Project Team
- PACE Industry Members
 - Al Hedin
- Jared Oldroyd
- Matt Orosz
- Mike Current

Acknowledgements

CityCenterDC | Parcel 1 Washington, D.C.

Thank You!

• Dr. John Messner

• Dr. Robert Leicht

• Bob Holland

Ronald Dodson

Kevin Parfitt

Academic

<u>Industry</u>

- Clark Construction
 - Truland
 - Hines
 - TSI
 - VSL

- Dr. Richard Mistrick

Analysis #1: SIPS Background Information New Phasing & SIPS Impact

Analysis #2: Electrical Redesign Background Information Redesign Impact

Analysis #3: Footbridge Installation Background Information Research Application Results

Final Recommendations Acknowledgements

6	Install AHU	2	5/29/2012	5/30/2012	2
6	Frame & Hang Shaft Walls	5	5/31/2012	6/6/2012	5
6	Close In Shafts	3	6/7/2012	6/11/2012	3
6	Layout & Top Track	5	6/1/2012	6/8/2012	6
6	Install Lavatory Support Steel	3	6/8/2012	6/13/2012	4
6	Rough In Duct Mains	5	6/8/2012	6/15/2012	6
6	Install VAV boxes	5	6/8/2012	6/15/2012	6
6	Frame Walls	5	6/15/2012	6/22/2012	6
6	Mechanical Pipe Rough In	5	6/22/2012	6/29/2012	6
6	Plumbing Rough In	5	6/22/2012	6/29/2012	6
6	Duct Rough In	5	6/22/2012	6/29/2012	6
6	Sprinkler Rough In	5	6/29/2012	7/6/2012	5
6	Frame Ceilings	5	7/6/2012	7/13/2012	6
6	Fire Alarm Rough In	5	7/13/2012	7/20/2012	6
6	Electrical Rough In	5	7/13/2012	7/20/2012	6
7	Install Sprinkler Standpipes	5	5/31/2012	6/6/2012	5
7	Duct Riser Rough In	5	5/31/2012	6/6/2012	5
7	Plumbing Riser Rough In	5	5/31/2012	6/6/2012	5
7	Mechanical Riser Rough In	5	5/31/2012	6/6/2012	5
7	Telecom/Security Riser Rough In	5	5/31/2012	6/6/2012	5
7	Electrical Riser Rough In	5	5/30/2012	6/5/2012	5
7	Install AHU	2	6/1/2012	6/5/2012	3
7	Frame & Hang Shaft Walls	5	6/7/2012	6/13/2012	5
7	Close In Shafts	3	6/14/2012	6/18/2012	3
7	Layout & Top Track	5	6/8/2012	6/15/2012	6
7	Install Lavatory Support Steel	3	6/15/2012	6/20/2012	4
7	Rough In Duct Mains	5	6/15/2012	6/22/2012	6
7	Install VAV boxes	5	6/15/2012	6/22/2012	6
7	Frame Walls	5	6/22/2012	6/29/2012	6
7	Mechanical Pipe Rough In	5	6/29/2012	7/6/2012	5
7	Plumbing Rough In	5	6/29/2012	7/9/2012	6
7	Duct Rough In	5	6/29/2012	7/9/2012	6
7	Sprinkler Rough In	5	7/9/2012	7/16/2012	6
7	Frame Ceilings	5	7/16/2012	7/23/2012	6
7	Fire Alarm Rough In	5	7/23/2012	7/30/2012	6
7	Electrical Rough In	5	7/23/2012	7/30/2012	6
8	Install Sprinkler Standpipes	5	7/7/2012	7/13/2012	5
8	Duct Riser Rough In	5	7/7/2012	7/13/2012	5
8	Plumbing Riser Rough In	5	7/7/2012	7/13/2012	5
8	Mechanical Riser Rough In	5	7/7/2012	7/13/2012	5
8	Telecom/Security Riser Rough In	5	7/7/2012	7/13/2012	5
8	Electrical Riser Rough In	5	6/6/2012	6/12/2012	5
8	Install AHU	2	6/14/2012	6/15/2012	2
8	Frame & Hang Shaft Walls	5	6/14/2012	6/20/2012	5
8	Close In Shafts	3	6/21/2012	6/25/2012	3
8	Layout & Top Track	5	6/15/2012	6/22/2012	6
8	Install Lavatory Support Steel	3	6/22/2012	6/27/2012	4

Appendix

Mechanical Pipe, Plumbing, Duct Rough In Frame Walls

Sprinkler Rough In

Appendix

CityCenterDC | Parcel 1 Washington, D.C.

Electrical and Fire Alarm Rough In AND Sprinkler Rough In

Mechanical Pipe, Plumbing, Duct Rough In AND Electrical and Fire Alarm Rough In

Mechanical Pipe, Plumbing, Duct Rough In

Sprinkler Rough In

Building Type	Maximum Li Per Vers	ighting Power Dens ion of the ASHRAE	sity (W/sq.ft.) Al /IES 90.1 Standa	lowed Ird
	1989	1999/2001	2004/2007	2010
Automotive Facility	0.96	1.5	0.9	0.982
Convention Center	2.07	1.4	1.2	1.08
Court House	1.44	1.4	1.2	1.05
Dining: Bar Lounge/Leisure	1.37	1.5	1.3	0.99
Dining: Cafeteria/Fast Food	1.37	1.8	1.4	0.90
Dining: Family	1.37	1.9	1.6	0.89
Dormitory	1.15	1.5	1.0	0.61
Exercise Center	2.07	1.4	1.0	0.88
Gymnasium	2.07	1.7	1.1	1.00
Healthcare Clinic	1.44	1.6	1.0	0.87
Hospital	1.44	1.6	1.2	1.21
Hotel	1.15	1.7	1.0	1.00
Library	1.29	1.5	1.3	1.18
Manufacturing Facility	0.96	2.2	1.3	1.11
Motel	1.15	2.0	1.0	0.88
Motion Picture Theater	2.07	1.6	1.2	0.83
Multi-Family	1.15	1.0	0.7	0.60
Museum	2.07	1.6	1.1	1.06
Office	1.26	<mark>1.3</mark>	<mark>1.0</mark>	0.90
Parking Garage	1.03	0.3	0.3	0.25
Penitentiary	1.44	1.2	1.0	0.97
Performing Arts Theatr	e 2.07	1.5	1.6	1.39
Police/Fire Station	1.44	1.3	1.0	0.96
Post Office	1.44	1.6	1.1	0.87
Religious Building	2.07	2.2	1.3	1.05
Retail	2.25	1.9	1.5	1.40
School/University	1.29	1.5	1.2	0.99
Sports Arena	2.07	1.5	1.1	0.78
Town Hall	1.44	1.4	1.1	0.92
Transportation	2.07	1.2	1.0	0.77
Warehouse	1.03	1.2	0.8	0.66
Workshop	0.96	1.7	1.4	1.20

Table 1. ASHRAE/IES 90.1 lighting power allowances using the Building Area Method.

Appendix

of receptacle circuits necessary

 $22436SF \cdot 2.5W / SF = 56090W$ $56090W/180\frac{VA}{rec} = 312rec$ $\frac{312rec}{6\frac{rec}{ckt}} = 52ckts$

For the 3RD Floor, panels L3A1 & L3B1 have XX spare 70 ckts OK

For remaining floors, top panels have 67 spare ckts, and bottom panels have 70 spare ckts.... OK

Remaining Typical Floor Layout

Original XFMR anticipated max load of 112.5 kVA from low voltage panels, or 4.8 W/SF.

By reducing receptacle power density to 2.5 W/SF, I propose...

Eliminate XFMRs on floors 4, 6, & 8

The low voltage panels on those floors will be fed by the XFMR on the above floor

Current max kVA for low voltage panels is 112.5kVA, or 4.8 W/SF

Receptacle power density changed to 2.5W/SF

Factor in existing 10kVA load, or .4 W/SF...

 $\frac{112.5kVA}{4.8W / SF} = \frac{X}{2.9W / SF}$

X = 68kVA

So

Therefore, a set of panels require 68 kVA

Meaning both sets together will be a total of 136 kVA

Consequently, you will need a 150 kVA XFMR

*Refer to riser diagram for additional wire and breaker sizing

	11		Contraction of the local division of the loc		
		Voil Arment	14	Y Y	VI
Contraction and an	(auto)	Min	per Square For	N.C.	the second
Type of occupanty	Lighting."	Power	Arco	nd kiserivig	Partnert Load
and a constant			Construction	Monadactive	Growth
(areal	10-2.0	. 6.	12.00		10
501	70-40	03	149420	5.8	20-47
- Jahrry	20-40	0.5	2.7	No. of Street	Constra
18	13-7.5		3.7	2002	20-40
Auger Q	10-16	0.5	6.44	20-22	10.2
Man and Manager	19-10	0.5	\$-3-	7.6.5 2	ALCONE.
PERMIT REA	1.444.1	2.59	12-25	1024	200-200
(appen ioona					Services.
DETER.	20.20	14	1 marsh	Real Property in	A CONTRACTOR
idam filosz	#4953 (B)	1.5	5.7	23-52	50-100
HERE FICON	-2.0	2.0-35	15.0	1-2010	2012 W
and that here a second of	3.4	2.0	1/	as a second	50-110
200-120,000	14.92	0.75	-	-00	
gale 122,000	the second	- 4.0	-		
de (comunector)	10.35	1.0			00-30
NG4	10.77	24	Sec.	20-22	40-40
	10.15	10	1.000		
NOS	10.10	1.0	3-6	42-15	30.40
OTS IND COOKINGS	12.23	5-20	3+3	1242.5.	80,100
dnat loft building	14724	23	1.501	12.45	100-100
STORES - COL	12-24	2.3	0-10	12.22	30.40
Complete The second second	11.25	2.0		I D'EE	60.00
cal revitat	1.002.2	ne		and the second se	81.60
and the second se	19.43	0,2	14.7	16.33	-
(building)	12-28	2.2	E.10	15.48	36-45
and the second se		1000	25.10	14.33	55.50
	20-23	10	3.2-0.0	need.	
	20-3.5	0.2			
one want from the	20-3.0	0,5		12.4	
Der and Denny	20-3.0	La construction	19-8	- Jon	40-80
	20-35	0.25	Vie	Description of	
d have been a second se	0.76-1.0	10.00	47	113 0034	
and dex	15.2	-	- 5		10.20
thee, upecially	and the second				10-30
CONVERSION AND	2.23				
the success transie developer			1.000		
South constant	0.5		-		
Contract of the Contract of th	0.25				
S.M.G.					

Switchboard MS12A resize

Capacity:

Lighting & Receptacle Capacity: 1902 kVA

$$1902kVA = \frac{kW}{1000 \cdot 0.95} = 1807000W$$

 $\Rightarrow \frac{1807000W}{257500SF} = 7.02W/SF \text{ Capacity}$

Recommendations:

ASHRAE, Sec. 9, provides maximum lighting power density recommendation for office building (W/SF)

- ASHRAE 2007 = 1.0 W/SF
- ASHRAE 2010 = 0.9 W/SF

*http://lightingcontrolsassociation.org/ashrae-releases-90-1-2010-part-1-design-scope-administrativerequirements/

Per MEEB, pg. 1265, receptacle (misc. power) power density recommendation is: 2.375 W/SF

Therefore,

0.9W/SF + 2.375W/SF = 3.275W/SF for lighting & receptacle loads

Switchboard MS12A provides an excess of 3.645 W/SF for these loads

Proposal:

Remove 800kVA from lighting & receptacle loads

From 1902kVA to 1102KVA

$1102kVA \cdot 1000 \cdot 0.95 = 1046900W$

 $\Rightarrow \frac{1046900W}{257500SF} = 4.1W/SF \text{ <u>NEW</u> lighting & receptacle capacity}$

This is still 0.8 W/SF more than design recommendations

Note: A PF of 0.95 was used in all calculations

Effect:

Initial Switchboard total kVA load: 3173 kVA (3982A @ 460V, 3¢)

Revised Switchboard total kVA load: 2373 kVA (2978A @ 460V, 3¢)

<u>Therefore</u>,

You can go from 4000A switchboard to 3000A switchboard!!

Appendix

3RD Floor Redesign

XFMR

Square footage of office space (minus core) = 22,436 SF

Panels L3A1 & L3B1 (120/208V) are designated for receptacles + already designated loads

 $2.5W/SF \cdot 22436SF = 56090W$ $\frac{56090W}{0.95PF} = 59042kVA \approx 59kVA$

Add in existing circuit loads 59kVA+10kVA+0kVA=69kVA

(10kVA from panel L3A1 and 0kVA from panel L3B1)

Therefore, transformer can be reduced from 112.5 kVA to 75 kVA

Which means your primary breaker can be 100A and your secondary breaker can be or 250A

See PAGES XXX FOR PANEL SCHEDULES

H3MA1

Consolidation of panels H3MA1 & H3MB1

See Floors 3-9 480V panel consolidation section

Wiring

Refer to riser diagram

All calculations based off NFPA 70 – NEC 2011

BREAKER RATING: 8	INTERUP	TING							M.L.O		3 Ø - 4 WI					
SIZE	WRE SIZE	SERVING	KVA AØ	KVA BØ	KVA CØ	GKT BKR		KT NO		CKT NO	r	CKT BKR	KVA AØ	KVA BØ	KVA CØ	SERVING
1/2*	2#12	TOILET RM. LTS.	1.34			1P-20		1		2		1P-20	1.00	100000		LTG. RELAY PANE
1/2"	2#12	CORRIDOR LTS.		0.38		1		3		4		1				SPARE
		SPARE				1		5		8						1
						1		7		8	\sim	- I				
						1		9		10		- I				
						- I -	(11		12		- I				1
						- I -		13		14		1				
						1 I		15		16		- I				
		V				V		17		18		V				v
		SPACE						19		20						SPACE
								21		22						
								23		24						
							(25		26	\sim					
								27		28						1
		1						29		30						
								31		32	\sim					1
								33		34						
								35		36						٧
								37		38	T	3P-175	1.62			112.5 KVA XFMR
								30		40	\uparrow			0.54		(PANEL LXA1)
		v						41		42					0.50	
			1.3	0.4	0.0								2.6	0.5	0.5	
			A Ø =	4	KVA								cø:	1	KVA	
			B Ø =	1	KVA							T	OTAL -	5	KVA	

							PANEL	H3MA1						
REAKER	INTERUP	TING					M.L	.0.			3 Ø - 4 WIR			
ATING: 5	ERIES RA	TED												
SIZE	SIZE	SERVING	A Ø	кvа ВØ	CØ	BKR	NO	ND	BKR	A Ø	BØ	CØ	SERVING	
		SPACE					\sim 1	2 ~	1P-30	5.82	511515		FPTU (8/5.0)	
		1	00000000					4 ~	1		5.82		FPTU (B/5.0)	
			110110	0000000			5	6 ~	1		011033	5.82	FPTU (B/5.0)	
					HERE				1	5.82	311311		FPTU (8/5.0)	
			0000000		0000000		<u> </u>	10 ~	t i	1110000	5.22	00000000	FPTU (B/4.4)	
		1	11221120	112111			<u> </u>	12 ~	i i		211222	5.22	FPTU (B/4.4)	
				2122112			─ 13	1 14 ~	V.	5.22	201000		FPTU (B/4.4)	
			0000100		0000111		15	16 ~	1P-25	1113333	4.72	1000000	FPTU (B/3.9)	
			1101110	BISHE			─ 17	18 ~	1		1111111	4.72	FPTU (B/3.8)	
							19	20 ~	i	4.42	0000000	1111233	FPTU (B/3.6)	
			110110				─ 21	22 ~	v		4.52		FPTU (B/3.7)	
			1000100	1000000			~ 23	24 ~	1P-20	1112111	011010	3.42	FPTU (8/2.6)	
				BESHE	STATES.			26 ~	· 1	3.42	811833		FPTU (B/2.6)	
		v	000000000		883888		27	28 ~	1	1113333	1.64		FPTU (B/-)	
3/4"	2010	FPTU (8/5.0)	00000000		5.82	1P-30	29	30 ~	1		011011	1.64	FPTU (B/-)	
		FPTU (8/5.0)	5.82			1	31	32 ~	1	1.64	1000		FPTU (B/-)	
		FPTU (B/5.0)	00001000	5.82		1	─ 33	34 ~	1		1.64		FPTU (B/-)	
1	1	FPTU (8/5.0)	110110	HIGHLE	5.82	1	→ 35	38 ~	V			1.64	FPTU (B/-)	
		FPTU (C/4.8)	6.22			1	→ 37	1 38 m	3P-15	3.00			EWH-1	
		FPTU (C/4.6)		8.22			─ 39	40 1			3.00		(9.0 KW)	
v	v	FPTU (C/4.6)			6.22	v	A1	42				3.00		
			12.0	12.0	17.9	1	FEED TH	RULUGS		29.3	25.6	25.5		
			A Ø -	41	KVA					сø-	43	KVA		
			BØ-	39	KVA				т	OTAL -	123	KVA		

NOTE: CONTRACTOR SHALL LABEL ALL FPTU CIRCUITS WITH MECHANICAL ZONE DESIGNATIONS (E.G., "FPTU 2-1") REFER TO MECHANICAL DRAWINGS FOR ZONE DESIGNATIONS.

Appendix

City	Lenter
	Washing

	PANEL H(3-9)MB1													
BREAKER	INTERUP	PTING					1	W.L.C).					3 Ø - 4 WIRE
RATING: S	ERIES R/	ATED												
CONDUIT	WIRE	OF PV/INO	KVA	KVA	KVA	CKT	CKT		CKT	CKT	KVA	KVA	KVA	OF EMINO
SIZE	SIZE	SERVING	ΑØ	вø	СØ	BKR	NO		NO	BKR	ΑØ	ВØ	CØ	SERVING
3/4*	4912	FPTU (C/5.8)	2.51			3P-15	\uparrow 1		2					SPACE
				2.51			1 3		4 ~					
					2.51		5		6 🦳					
3/4*	4#12	FPTU (C/5.9)	2.51			3P-15	T^7		a 🔿					
				2.51			✓ *		10					
					2.51		<u> </u>		12					
3/4*	4#12	FPTU (C/6.6)	2.74			3P-15	T 13		14					
				2.74			15		16 ~					
					2.74		17		18					
3/4*	4912	FPTU (C/6.6)	2.74			3P-15	T 19		20					
				2.74			21		22 ~					
					2.74		- 23		24 ~					
3/4*	4912	FPTU (C/5.7)	2.44			3P-15	↑ 25		26 ~					
		(FL. 4, 6, & 8 ONLY)		2.44			27		28 ~					
					2.44		- 29		30 ~					
		SPACE					→ 31		32 ~					
							33		34 ~					
		1					35		36					
		1					─ 37		38 ~					
							─ 39		40 ~					
		V					41 41		42 (v
			12.9	12.9	12.9						0.0	0.0	0.0	
						_								
			A Ø =	13	KVA						C Ø =	13	KVA	
			В∅=	13	- KVA					т	OTAL =	39	KVA	

NOTE; CONTRACTOR SHALL LABEL ALL FPTU CIRCUITS WITH MECHANICAL ZONE DESIGNATIONS (E.G., "FPTU 2-1"). REFER TO MECHANICAL DRAWINGS FOR ZONE DESIGNATIONS.

							PAN	NEL	. L(3	-11)A1								
REAKER	INTERUP	TING				3P-400A M.C.B.									3 Ø - 4 WIRE				
ATING:	10,000 /	LLC.			(200% NEUTRAL)														
ON DUIT	WIRE	REPVING	KVA	KVA	KVA	CKT	CKT CKT		CKT			CKT	KYA	KVA	KVA	8.E DVINO			
8 2E	8 IZE	OERVING	ΑØ	ВØ	CØ BKR NO NO BKR						ΑØ	ВØ	сø	OEKTING.	L				
1/2*	2#12	CORE RECEP.	1.44			1P-20	(1		2)	1P-20	0.18			SEC. PNL. (5 & 10)			
1	1	TOILET RM. RECEP.		0.54		1		3		4)	1		1.80		W.SLOT TRK. (5)	0		
1	1	LCP-1 (367 ONLY)			0.50	1		6		6)	1			1.08	W.SLOT LED (5 & 9)	0		
1	1	FLUSH VALVE	0.50			1	(7		8)	1	1.00			E.SLOT (3-9,11)	0		
1	1	SMOKE DAMPERS		0.50		1		8		10)	1		1.46		E.SLOT LED (10,11)	0		
v	v	SMOKE DAMPERS			0.50	1	(11		12)	1				SPARE			
		SPARE				1		13		14)	1							
					131111	1		15		16)	1	i Hindi Hi						
		1				1		17		18)	1							
		1				1		19		20)	1							
						1		21		22		1					_		
						1		23		24)	1							
		1				1		25		26)	1				1			
						1		27		28)	1							
		V				V		29		30)	- V				v			
		SPACE						31		32						SPACE			
		1						33		34)								
		1					(35		36)					1			
								37		38)								
								39		-40)								
		V						41		42	(v			
			1.9	1.0	1.0		1	FEED	THRU	LUGS			1.2	3.3	1.1		_		
			A Ø =	3	KVA								cø-	2	KVA				
			B Ø =	-4	- KVA							T	TAL =	10	KVA				

							PANEL	_(2	2-11)B	1				
BREAKER	INTERUPT	ING					M		3 Ø - 4 WR					
CONDUIT SIZE	WIRE SIZE	SERVING	KVA A Ø	KVA BØ	KVA. CØ	CKT BKR	CKT	EU	CKT	CKT BKR	KVA A Ø	KVA BØ	KVA CØ	SERVING
		SPARE			I CONTRACT	1P-20	∩ 1		2 ~	1P-20		BIO BIO		SPARE
					1211131	1	\frown	II.	+ ~	5 I	BANNELL			
						1	<u> </u>		6 ~	< I				
						1			° (s I				
						1	(10	<u> </u>				
						1	→ 11		12	S 1				
						1	13		14 🦳	<u> </u>				
						1	<u> </u>		10 ~	< I				
					L	1	<u> </u>		18 ~	<u> </u>				
					1211131			LI.	20 ~					
			11.3113		1211121		<u>21</u>		22	<u> </u>			110110	
			10.0110			<u>+ +</u>	<u> </u>		24	<u> </u>				
			HERITIG			<u> </u>	25	┛┟	28		001110310			
		- V	1000000	111211122	1011101	÷.	22		30			011000111		1
		SPACE	10.001110		1000000	<u> </u>	<u> </u>	⊢₽	32				011033103	SPACE
			HE SHE		100000		A 33	H	34	-			0.000	
					10-111201	<u> </u>	35	٦b	38 ~	-			111333112	
			1100011100		000000		→ 37		38 ~				000000	1
			100010		1000000		<u> </u>	i t	40 ~	-	REALING			
		v				-	→ 41		42 ~					v
			0.0	0.0	0.0	1	FEED T	IRU	LUGS		0.0	0.0	0.0	
			A Ø =	0	KVA						cø-	0	KVA	
			BØ=	0	KVA					т	OTAL =	D	KVA	

Descripti

4000A MS12A DISTRIBUTION SWITCHE 225A HXMA1 PANELBOARD 225A HXMB1 PANELBOARD 225A HXL1 PANELBOARD 400A LXA1 PANELBOARD 400A LXB1 PANELBOARD 112.5 KVA 3PH 480V STEEL FLEX WITH 225A CU BUS DUCT BUS PLUG -> PNL HXMA1 - 2 1/2" EMT BUS PLUG -> PNL HXL1 - 2 1/2" EMT [40 3 4000A CU LZ DUCT

Description

3000A MS12A DISTRIBUTION SWITCH
225A HXMA1 PANELBOARD
225A H3L1 PANELBOARD
225A H4L1 PANELBOARD
225A H5L1 PANELBOARD
400A L3A1 PANELBOARD
400A L3B1 PANELBOARD
600A LXA1 PANELBOARD
600A LXB1 PANELBOARD
75 KVA 3PH 480V STEEL FLEX WITH G
150 KVA 3PH 480V STEEL FLEX WITH
250A CU BUS DUCT
200A CU BUS DUCT
100A CU BUS DUCT
BUS PLUG -> PNL H3MA1 - 2 1/2" EM
BUS PLUG -> PNL H3L1 - 2 1/2" EMT [
BUS PLUG -> PNL H4MA1 - 2 1/2" EM
BUS PLUG -> PNL H4L1 - 1 1/4" EMT [
BUS PLUG -> PNL H5MA1 - 2 1/2" EM
BUS PLUG -> PNL H5L1 - 2 1/2" EMT [
PNL LXB1 -> PNL LXA1 - 2 1/2" EMT [4
3000A CU LZ DUCT

			KEY DA	JNITS		
TYPE 1	CAPACITY ²	MAX. NUMBER OF STRANDS	CABLE DIAMETER	OVERALL DIMENSIONS		WEIGHT [®]
	kN		D(mm)	HxW(mm)	kg	
SLU-10	104	1	16	970	200	60
SLU-30	312	3	54	1130	250	120
SLU-40	416	4	67	1275	250	200
SLU-70	728	7	82	1122	400	230
SLU-120	1248	12	116	1400	400	430
SLU-220	2288	22	167	2100	520	1520
SLU-330	3224	31	190	2140	600	1820
SLU-440	4368	42	228	2050	610	2220
SLU-580	5720	55	254	1780	790	3250

Appendix

Package 1 - Original														
on	Length	Count		Mat. \$	Equip. \$		otal Mat. \$	Lbr Hr. Lbr. \$		Lbr. \$		Total Lbr. \$	Total \$	
OARD		1			\$ 67,200.00	\$	67,200.00	80.5	\$	45.00	\$	3,622.50	\$	70,822.50
		7			\$ 7,600.00	\$	7,600.00	119	\$	45.00	s	5,355.00	\$	12,955.00
		7			\$ 4,900.00	\$	4,900.00	70	\$	45.00	s	3,150.00	\$	8,050.00
		7			\$ 5,400.00	\$	5,400.00	206.5	\$	45.00	s	9,292.50	\$	14,692.50
		7			\$ 10,250.00	\$	10,250.00	227.5	\$	45.00	\$	10,237.50	\$	20,487.50
		7			\$ 5,400.00	\$	5,400.00	175	\$	45.00	s	7,875.00	\$	13,275.00
GROUND		7	\$	5,364.33	\$ 35,450.00	\$	40,814.33	292.88	s	45.00	s	13,179.60	s	53,993.93
	1	14			\$ 18,450.00	\$	18,450.00	84.2	s	45.00	s	3,789.00	s	22,239.00
[4] 3/0, [1] 6GRD CONC T-ROD	35*7	1	\$	6,566.98		\$	6,566.98	19.94	s	45.00	s	897.30	s	7,464.28
0 3/0, [1] 6GRD CONC T-ROD	28*7	1	\$	5,017.60		\$	5,017.60	16.08	s	45.00	s	723.60	s	5,741.20
	390	1	\$	245,700.00		\$	245,700.00	719.9	\$	45.00	s	32,395.50	s	278,095.50

Package 2 - New Length Count Mat. \$ Equip. \$ Total Mat. \$ Lbr Hr. Lbr. \$ Total Lbr. \$ Total \$ HBOARD \$40,700.00 \$ 40,700.00 80.5 \$ 45.00 \$ 3,622.50 44,322.5 \$10,500.00 \$ 10,500.00 175 \$ 45.00 \$ 7,875.00 \$ 18,375.00 \$ 1,500.00 \$ 1,500.00 28 \$ 45.00 \$ 1,260.00 2,760.00 3,375.00 \$ 7,885.00 \$ 4,510.00 \$ 4,510.00 75 \$ 45.00 \$ 9,782.50 \$ 5,800.00 \$ 5,800.00 88.5 \$ 45.00 \$ 3,982.50 \$ 1,170.00 \$ 1,170.00 25 2,295.00 \$ 45.00 \$ 1,125.00 \$ 4,900.00 \$ 4,900.00 175 \$ 45.00 \$ 7,875.00 \$ 12,775.00 \$ 6,500.00 \$ 6,500.00 102 \$ 45.00 \$ 4,590.00 \$ 11,090.00 7,172.50 \$ 3,190.00 \$ 3,190.00 88.5 \$ 45.00 \$ 3,982.50 GROUND H GROUND 558.27 \$ 4,200.00 \$ 4,758.27 28.81 \$ 45.00 \$ 1,296.45 \$ 6,054.72 3 \$ 3,612.46 \$ 19,800.00 \$ 23,412.46 145.2 \$ 45.00 \$ 6,534.00 \$ 29,946.46 \$ 7,180.00 \$ 7,180.00 18.2 \$ 45.00 \$ 819.00 7,999.00 \$16,000.00 \$ 16,000.00 48.2 \$ 45.00 \$ 2,169.00 \$ 18,169.00 \$ 4,800.00 \$ 4,800.00 549.00 \$ 5,349.00 12.2 45.00 \$ MT [4] 3/0, [1] 6GRD CONC T-ROD 35 1 \$ 865.1 865 17 19 42 45.00 873.90 1,739.07 723.60 1.440.40 T [4] 3/0, [1] 6GRD CONC T-ROD 28 1 \$ 716.80 716.80 16.08 \$ 45.00 \$ MT [4] 3/0, [1] 6GRD CONC T-ROD 35 1 \$ 840.92 \$ 45.00 \$ 810.90 \$ 1,651.82 840.92 18.02 [4] 3, [1] 8GRD CONC T-ROD 28 1 \$ 243.02 \$ 243.02 10.93 \$ 45.00 \$ 491.85 734.87 MT [4] 3/0, [1] 6GRD CONC T-ROD 35 1 \$ 840.92 \$ 840.92 18.02 \$ 45.00 \$ 810.90 \$ 1,651.82 T [4] 250, [1] 4 CONC T-ROD 28 1 \$ 1,019.43 19.27 \$ 45.00 \$ 867.15 \$ 1,886.58 \$ 1,019.43 4] 3/0, [1] 6GRD CONC T-ROD 10*3 1 \$ 1,291.08 \$ 1,291.08 11.88 \$ 45.00 \$ 534.60 \$ 1,825.68 \$163,800.00 626 \$ 45.00 \$ 28,170.00 \$ 390 1 \$ 163,800.00 191,970.00 \$ 304,538.07 1,829.73 \$ 82,337.85 **\$ 386,875.92**

CityCenterDC | Parcel 1 Washington, D.C.

	H(3-9)MA1															
V:	480Y/277	Rm #	Elec. Rn	10000	AIC	3P	- 4W	Fdr:	(4) 3/0 & #6 G.	2-1/2"C	155	kVA			MLO	
	Designations	,	VA/Phas	e	Bk	r/Pole/	Wire		Designations	· ·	VA/Phas	e	Bk	le/Wire		
Ckt	Description	Α	В	С	Bkr	/ # P	/ W	Ckt	Description	Α	В	С	Bkr	/ # P /	W	
1	FPTU (C/5.9)	2510			20	/ 3	/ #12	2	FPTU (B/5.0)	5820			30	1	#10	
3	-		2510		-	/ -	/ -	4	FPTU (B/5.0)		5820		30	1	#10	
5	-			2510	-	/ -	/ -	6	FPTU (B/5.0)			5820	30	1	#10	
7	FPTU (C/5.9)	2510			20	/ 3	/ #12	8	FPTU (B/5.0)	5820			30	1	#10	
9	-		2510		-	/ -	/ -	10	FPTU (B/4.4)		5220		30	1	#12	
11	-			2510	-	/ -	/ -	12	FPTU (B/4.4)			5220	30	1	#12	
13	FPTU (C/6.6)	2740			20	/ 3	/ #12	14	FPTU (B/4.4)	5220			30	1	#12	
15	-		2740		-	/ - /	/ -	16	FPTU (B/3.9)		4720		25	1	#12	
17	-			2740	-	/	/ -	18	FPTU (B/3.8)			4720	25	1	#12	
19	FPTU (C/6.6)	2740			20	/ 3	/ #12	20	FPTU (B/3.6)	4420			25	1	#12	
21	-		2740		-	/	/ -	22	FPTU (B/3.7)		4520		25	1	#12	
23	-			2740	-	/ -	/ -	24	FPTU (B/2.6)			3420	20	1	#12	
25	Space	0			0	0	/ #####	26	FPTU (B/2.6)	3420			20	1	#12	
27	Space		0		0	0	/ #####	28	FPTU (B/-)		1640		20	1	#12	
29	FPTU (B/5.0)			5820	30	/ 1	/ #10	30	FPTU (B/-)			1640	20	1	#12	
31	FPTU (B/5.0)	5820			30	/ 1	/ #10	32	FPTU (B/-)	1640			20	1	#12	
33	FPTU (B/5.0)		5820		30	/ 1	/ #10	34	FPTU (B/-)		1640		20	1	#12	
35	FPTU (B/5.0)			5820	30	/ 1	/ #10	36	FPTU (B/-)			1640	20	1	#12	
37	FPTU (B/4.6)	6220			30	/ 1	/ #10	38	EWH-1	3000			20	3	#12	
39	FPTU (B/4.6)		6220		30	/ 1	/ #10	40	-		3000		-	/ - /	-	
41	FPTU (B/4.6)			6220	30	1	/ #10	42	-			3000	-	/ - /	-	

Savings \$120,940.49

\$ 417,298.91 2,011.50 \$ 90,517.50 **\$ 507,816.41**

Appendix

_					
51	0*10		lise concerved	ive KL=15"	
	-	R			
2		1.2 (27) (77)+ 1.6 (30)(17) = 6.2 K		
	- 11	3.6"		10-1k	
	() () () () () () () () () () () () () (1.2 (27)(77) + 0.5 (30 + 1.6 (0.15) (8) (17)/	(77) + 12(75)(77) 22.14 200)+12(15)(176)	
-	_ 0	5.6 + 2(10.1) + 1.6(1	o. 67)(80)(77)(2)/000	= 57 × +9.2 × = 46,2 ×	
ł	Ps	3.6+ 3(10.1) + 1.6 (0.6)(80)(77)(3)/100	= 516" 19.2" = 60.8 k	
2		3.6 + 4(10.1) + 1.6 (,	55)(8)(77)(4)/(38)	= 659° + 2(9.2) - 84.1 k	
L	() + 6	5.6 + 5(10.1) + 1.6(.52	(10)(17)(5)/(000 *	79.7×+2(92)= 98.1k	
	_5	3.6 + 6 (10.1) + 1.6(.5)(20)(77)())/000 =	9382+ 3(9.2)= 121.4	
	D A	5.6+7(10.1)+1.6(.41	\$)(50)(77)(7)/1005	= 107.4 * + 3(9.2) = 135.	
	2	$3.1_0 + 5(10.1) + 1_16(.96)$	000)(8)(FF)(08)(- 1207" +4(4.2) = 157.5 k	
1	to i) 316 + 9(10,1) + 1.10(.45) K End of skel columns)(so)(72)(9) KooO	= 1944×+4(9.2) = 171.21	
K	S lav	erorth coputing = lot	SK		
00) throw length,	ugh (6) indicale local from , or 9.2%.	folbridgez One column	takes 1/4 of the Gollwoody	

CityCenterDC | Parcel 1

+ place beau to span the two atriums. * Hydraulic jectos will then be priced on top of beams t use whe finning beam all web stifferers to support gacks Column